您现在的位置是:主页 > 电子DIY > 电源技术电路图 >
满足USB规范的电源开关设计方案-电源技术电路图
发布时间:2023-04-10 05:07:54所属栏目:电源技术电路图 已帮助人编辑作者:电路图知识网
1 引言
通用串行总线(UniversalSerialBus)使PC机与外部设备的连接变得简单而迅速,随着计算机以及与USB相关便携式设备的发展,USB必将获得更广泛的应用。由于USB具有即插即用的特点,在负载出现异常的瞬间,电源开关会流过数安培的电流,从而对电路造成损坏。
本文设计的USB电源开关采用自举电荷泵,为N型功率管提供2倍于电源的栅驱动电压。在负载出现异常时,过流保护电路能迅速限制功率管电流,以避免热插拔对电路造成损坏。
2 USB开关电路的整体设计思路
图1为USB电源开关的整体设计。其中,VIN为电源输入,VOUT为USB的输出。在负载正常的情况下,由电荷泵产生足够高的栅驱动电压,使NHV1工作在深线性区,以降低从输入电源(VIN)到负载电压(VOUT)的导通损耗。当功率管电流高于1A时,Currentsense输出高电平给过流保护电路(Currentlimit);过流保护电路通过反馈负载电压给电荷泵,调节电荷泵输出(VPUMP),从而使功率管的工作状态由线性区变为饱和区,限制功率管电流,达到保护功率管的目的。当负载恢复正常后,Currentsense输出低电平,电荷泵正常工作。
图1 USB电源开关原理图
3 电荷泵设计
图2为一种自举型(SelfBooST)电荷泵的电路原理图。图中,为时钟信号,控制电荷泵工作。初始阶段电容,C1和功率管栅电容CGAte上的电荷均为零。当为低电平时,MP1导通,为C1充电,V1电位升至电源电位,V2电位增加,MP2管导通。假设栅电容远大于电容C1,V2上的电荷全部转移到栅电容CGATE上。当为高电平时,MN1导通,为C1左极板放电,V1电位下降至地电位,V2电位下降,MP2管截止,MN2管导通,给电容C1右极板充电至VIN。在的下个低电平时,V1电位升至电源电位,V2电位增加至2VIN,MP2管导通,VPUMP电位升至2VIN-VT。
图2 自举电荷泵原理图
自举电荷泵不需要为MN2和MP2提供栅驱动电压,控制简单,但输出电压会有一个阈值损失。图3是改进后的电荷泵电路图,1和2为互补无交叠时钟。由MN2、MN5、MP3、MP2和电容C2组成的次电荷泵为MN4、MP4提供栅压,以保证其完全关断和开启。当1为低电平时,MP1导通,电位增加,此时,V3电位为零,MP4导通,V2上的电荷转移到栅电容CGATE上,VPUMP电位升高。当1为高电平时,MP2导通,为C2充电,V4电位上升至电源电位,V3电位随之上升,MP3导通,VPUMP电位继续升高。MN3相当于二极管,起单向导电的作用。
在VPUMP电压升高到VIN+VT以后,MN3隔离V3到电源的通路,保证V3的电荷由MP3全部充入栅电容。这样,C1和C2相互给栅电容充电,若干个时钟周期后,电荷泵输出电压接近两倍电源电压。
在电荷泵输出电压升高的过程中,功率管提供的负载电流逐渐上升,避免在容性负载上引起浪涌电流。
图3 改进后的电荷泵
Tags:
相关文章
电源技术电路图相关资讯
PWM信号在LED驱动电源中的应用案例-电源技术电路图
电源模块常见故障的解决方法-电源技术电路图
电源模块的EMI降低解决方案-电源技术电路图
256色蓝牙4.0调色灯方案详解-电源技术电路图
隔离反激和非隔离BUCK应用设计方案-电源技术电路图
UPS系统中的电源解决方案-电源技术电路图
微电网的两种拓扑架构思路介绍-电源技术电路图
无人机电源系统设计方案探讨-电源技术电路图
简易直流稳压电源的设计方案-电源技术电路图
一种用于高速ADC的采样保持电源电路的设计-电源技术电路图
三相异步电动机绝缘电阻测量要求及方案-电源技术电路图
基于CSE7761的智能漏电保护设计方案-电源技术电路图
为什么在反激式转换器中使用BJT?-电源技术电路图
宽输入电压解决方案的尺寸和成本对比-电源技术电路图
三相四线智能电表的电源解决方案-电源技术电路图